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Some Properties of  the (Fo--F~)-Synthesis 
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It  is shown that  a Fourier synthesis whose coefficients are the differences of observed and cMculated 
structure factors has a number of properties which make it useful for accurate crystal-structure 
analysis. The use of this synthesis for the refinement of atomic co-ordinates and temperature-factor 
parameters is discussed and its equivalence to certain other methods is demonstrated. 

1. Introduction and notation 

The name 'error synthesis '  was introduced by  Bunn  to 
denote a Fourier  series whose coefficients are the 
differences of observed and calculated structure factors. 
This synthesis proved valuable in establishing the 
crystal structure of sodium benzyl  penicillin (Crowfoot, 
Bunn,  Rogers-Low & Turner-Jones,  1949). Essent ial ly  
the same Fourier  synthesis has been used as a means of 
locating the hydrogen atoms of a crystal structure by  
F inbak  & :Norman (1948), and by  the writer (Cochran, 
1951). A closely related method was in fact used by  
Brindley & Wood (1929) in an investigation of the 
structure of the chlorine ion. In  this paper we shall not 
be concerned with the use of the error synthesis to 
establish the broad features of a crystal structure, bu t  
rather  with its use in the final stages of a structure 
analysis. Here the name '(Fo-Fc).synthesis' is more 
appropriate,  as the synthesis m a y  show details which 
are not errors, bu t  actual  features of the crystal  
structure, for instance, hydrogen atoms or bonding 
electrons. I t  will be shown in succeeding sections tha t  
the (Fo--Fc)-synthesis has a number  of properties 
which make it more useful than  the Fo-synthesis 
normal ly  used in crystal-structure investigations. 

In  order to effect an economy in writ ing certain 
equations, and to simplify the notation, we shall con- 
sider a centros3~nmetric structure referred to ortho- 
gonal axes. Where a different result holds for a structure 
lacking a centre of symmetry ,  this will be pointed out. 

We define 

x~ =x, y, z; a~=a, b, c; h i -h ,  lc, 1 according as i= l, 2 
or 3. 

xji = the x i co-ordinate of the j t h  atom. 

f j  = the scattering factor of the j t h  atom. 

hi Xi 0 = 2 ~ E - - .  
i ai 

s = 2 sin ~/h. 

F® = observed structure factor. 

F~ = calculated structure factor = 2 ~]f~ cos ®5. 
i 

1 
p = electron densi ty--  ~ ~ F cos 0. 

r N  

1 
D = -~ ~ (Fo-- F~) cos 0.  

(p)j = the value of p at the point (x~l, x~2, x~8 ). 

F, denotes a triple sum over all hi. 
N 

denotes a triple sum over all hi contained in a 
n l imited region of reciprocal space. 

2. Use  o f  the (Fo-F~)-synthesis to refine atomic 
co-ordinates 

While the electron density in a centrosymmetric  crystal 
is given by  1 

p = - ~ N  F e e s  0,  

the density measured in practice is 

1 
P® = = E F® cos 0, 

Vn  

where the notat ion serves to emphasize tha t  the 
measured structure factors are subject to exper imenta l  
error, and tha t  the series contains only n of the N terms 
of appreciable magnitude.  Atomic co-ordinates taken 
as the max ima  of P0 are subject to systematic  error 
because of the terminat ion of the series, and those 
obtained by minimizing 

¢ = Z w ( F o - F o )  ~ (2.1) 

must  be more accurate. The relations between this 
function and Fourier syntheses have been discussed in 
papers by  the writer (Cochran, 1948), Booth (1948) and  
Cruickshal~k (1949, 1950). 

These relations receive a simple interpretat ion in  
terms of the (F o-Fc)-synthesis. The condition tha t  ¢ 
should be a m i n i m u m  with respect to the co-ordinates 
of the j t h  atom is ~¢/ax~i = O. 

Now 8¢ _ 8~ ~ (Fo- Fc) wfj h i sin 05 (2-2) 
aXj~ ai n 

from (2.1) and the definition of F~. 
Now consider 

D,=v~n (Fo-Fc)wf,  cosO, 
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from which 

Oxi/~ aiV~ n (.Fo-.gc) wfjhisin05. (2"3) 

Comparison of (2.2) and (2.3) gives 
a+ 

= ( 2 . 4 )  

I t  follows that  ¢ is a minimum with respect to atomic 
co-ordinates when Dj has zero slope at  atomic centres. 
If  we take w = 1/f~, 

1 (Fo_Fc)2 ' (2.5) 

1 
while D+--,D=-~ (Fo-E~) cos O =Po-Pc. (2.6) 

Tb 

In  the case where trial atomic co-ordinates do not 
minimize ¢5, but are close to those which do result in a 
minimization, simple geometrical considerations give 

Axs~=- (~ )  (2.7) 

where C(pc) denotes the curvature of Pc. The identi ty of 
the correction (2.7) with tha t  derived by Qurashi (1949) 
from a different point of view follows from equation" 
(2.8) of Cruickshank (1950). 

We note that  minimization of ¢5, as defined by (2.5), 
results in co-ordinates which do not depend on the 
( N -  n) terms omitted from the corresponding (Fo- Fe)- 
synthesis. When, therefore, atomic co-ordinates have 
been obtained which result in zero slope at  the corre- 
sponding points of D, these co-ordinates are free from 
series-termination errors, except in so far as the scat- 
tering factors used to calculate the ~ ' s  may be in- 
correct. 

Methods of correcting results obtained from an Fo- 
synthesis for series termination have been given by  
Booth (1946) and van Reijen (1942). I t  is not difficult 
to show tha t  these methods are equivalent to the use of 
.the (Fo-  Ec)-synthesis. 

3. Rate of convergence 
The question whether the use of the (F o- F¢)-synthesis 
will minimize ¢5 more, or less, rapidly than other 
methods, will now be briefly considered. :From the 
identity of the corrections given by Qurashi's method 
and by the (F o- F~)-synthesis, it follows tha t  the two 
are identical as regards rate of convergence. Cruick- 
shank (1950) has shown tha t  the rate of convergence of 
the normal :Fourier method, with corrections for series 
termination by Booth's method, is approximately the 
same as that  of the least-squares method. I t  follows 
from the equivalence of the (Fo-F~)-synthesis to the 
normal :Fourier method plus Booth corrections, that  the 
rate of convergence of the (Fo-F~)-synthesis is 
approximately the same as that  of the method of least 
squares. Cruiekshank's conclusion that  if a structure 
does not have a centre of symmetry,  and if none of 
its projections are centrosymmetrical, the corrections 

given by the Fo-synthesis should be doubled to allow 
for phase-angle lag, can also be shown to apply to the 
(Eo-Fo)-synthesis. We can, in fact, generalize (2-7) and 
take aD 

Axis=-t('-~-~xi)JC(pe)j, 

where t = l  if the structure is centrosymmetrical, 
1 < t < 2 ff the structure is not centrosymmetrical but  
certain of its projections are (Schomaker & Shoemaker, 
private communication), and t=2 ff the structure is 
not centrosymmetrical and is not centrosymmetrical in 
any of its projections (Cruickshank, 1950). 

4. Refinement of atomic scattering factors 

We shall assume that  the scattering factors of atoms at  
rest can be correctly Obtained without reference to X- 
ray measurements. In the crystal lattice, allowance is 
made for thermal vibration and zero-point energy by 
taking 

v¢n¢2+wjnsa}]. (4.1) fs=fojexp[_s2{usn~ 1 + ~ 9 
This equation expresses the fact tha t  in general 

surfaces of constant f5 in reciprocal space are ellipsoids. 
The quantities u 5, v 5 and w 5 are constants, while 
nl,  n2, n 3 are the direction cosines of s referred to the 
axes of this ellipsoid, which may be called the 'ellipsoid 
of thermal vibration' .  I f  the thermal vibration of the 
j t h  atom is isotropic, the ellipsoid becomes a sphere and 
f~ =f0~ exp [ -  m s s2]. I f  the thermal vibration of an atom 
is not isotropic in the a 1 a~. plane, curves of constant f5 
in the a* a* plane of the reciprocal lattice are ellipses 
with major and minor axes in the direction of minimum 
and of maximum thermal vibration respectively, i.e. 

fj=fo~exp{--s2[uscos 2(t°-fiS)+vj sin~@-/?5)]}, (4.2) 

where/?5 is the angle which the direction of maximum 
thermal vibration makes with the a 1 axis. We shall 
consider only this two-dimensional case in detail, as 
results for the general case are obtainable, though at  
greater length, by the application of the same prin- 
ciples. I t  is convenient at  this point to express two- 
dimensional Fo- and (Fo-F~)-syntheses in terms of 
polar co-ordinates (r, ¢r), r being measured from an 
atomic centre. :For instance, 

1 I ~  Pc=-A~n Fcc°s2n (xjl+rc°s~)+h2(xj2+rsin~)a2 " 

" o  2" FJh  cos sin sin o Then ~--r = A ~ \al  

= _2~r 2 Fcs cos ( w -  ~k) sin 0,  (4-3) 
A ~  

and ~2Pv 4n2 2 2 =---~-~Fcs cos (w--~r)cosO, (4"4) 
~r2 n 

with corresponding results for ~D/~r and ~D/ar% 
Here (s, w) are the polar co-ordinates of the point 

(hx, h~) in the reciprocal lattice (see Fig. 1). 
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The condition for ¢¢ to be a minimum with respect 
to u s is 

0 ~¢~ - 2  2 ~F c 2 ~Sf¢ 
=Su--~. = ,~ f , (F° -  FC) ~u~ - ~ ~ ( F ° -  F~) ~--ff~/ 

The second term on the right-hand side corresponds 
merely to the change in ej produced by a change in the 
weighting factor lff~; it is the first term which reflects 
the change in the fit between ~o and F~ resulting from 
a change in u~-. Consequently we treat  1/f~ as a constant 
in the differentiation and take 

~¢~-= _ 2 ~F~ 
,u, ~/~/ou-5. .  

= 4 Y ,  (Fo  - Fc )  s 2 cos 2 ( ~ -  flj) cos %.  _(4.5) 
Tb 

Direction of 
minimum thermal 

vibration / ( r , ~ - )  

. / Direction of  
" " - . . /  maximum thermal 

7 - .  ( S , O ~ ) / / ~  vibration 

r "",, 

/ 

fl~ a, and a~ 

a~ and a: 

Fig.  1. S u p o r p o s i t i o n  o f  axaz a n d  az * a z * p l a n e s  to  s h o w  t h a t  

5 cos ¢" + 5 sin ~ = s cos (to- ¢0. 
a 1 az  

The second step follows from (4.2) and the definition 
of F~. Comparing (4.5) with ~ 

( ~- "D i  = ~.~ 
~r ~ ]~ A ~n (F° -  Fc) se c°s~ ( w-  ~r) cos @i, 

the result analogous to (4.4), we obtain 

au~- r P \ a r ~ ] /  (4.6) 

Sinfilarly, 8¢5 A [a~'D~ ~,~ - ~ [~-~/,' 

~t3~ ~ ~ Sr~ ~rd ~" 

In  the above equations, r~ and r, denote that  r is 
measured in the directions ~--/?~ and ~---/?~+½u 
respectively. I t  follows from these results that  the 
correct choice of temperature-factor parameters, which 
makes 

Ou = N = N  =°  , 

results in zero curvature of D at the centre of the j t h  
atom. This result might have been anticipated to some 
extent from the physics of the problem. More useful 
results are obtained when we consider how the values of 
u~, % and fl~. can be corrected from measurement of the 

curvature of D at atomic centres. We proceed as for 
the least-squares solution, and take 

/aF o aF~ ~F~ \ 

There will be ½n such equations, corresponding to the 
½n independent observations of F o. The normal 
equations are formed by multiplying each such equation 

_ 1 ~F~ 
throughout by each o f ~ 8 - ~ ,  etc., in turn, and adding 

the ½n separate equations in each case. This gives three 
equations of which the first is 

1 ~F~ 
= ~ Z ( ~ o - ~ )  N (~ :) 

Clearly ~, can be replaced by our customary ~] through- 
½n n 

c~ c c~F c out. The non-occurrence of terms ~ ~ ~th  j , j ' ,  is 

explained by the fact that  such terms may be neglected 
if the atoms are well enough resolved to satisfy 

Y, Lfi,  s~ cos ®¢ cos ®~, ~ E f2 s4 cos ~ 0~.. 
T~ Tb 

Using a number of results such as 

( a%~ s2.' 

and 
a2D] 4n 2 
-a-~L = A Z~ (F°-F°)~c°s~(~-flj)c°s°~' 

the normal equations (4.7) reduce exactly to 

(~0,pox ~ 0,po ~ 10~vx l \ oq h \ vq  or~lj \ or1 It 

/ a4pc \ /a4po\ Ja~D\ 
t )M' 

( u ~ - - v J ) l ~ ] ~ A f l J  \ariar2]/j  

These are not convenient for practical application. 
However, ff ui and v~ are not very different, 

( a'pol - P'pol s [  a,po i 6 e  _ , 

where f ~ = fob exp [ - ½s~(ui + v~) ]. 

Hence Aus -- A{3(~2D/~r[)j - (~D/~r~)j} 
4rF. Z L  s , 

T$ 

Av~-A{3(~9D/ar~)J- (a~D/ar~)~} 
4 . ~ Z L s ,  

Tb 

I f  the thermal vibration is isotropic, 

Am i =A(a2D/&~)~ 
21pZf~s 4 • (4"9) 

Tb 
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From the third of the normal equations (4.8), it may 
be deduced tha t  when A/?j = 0, or u s = vj, the directions 
of principal curvature of D at  the centre of the j t h  
atom are the directions of maximum and of minimum 
thermal vibration of this atom. A/?j = 0 corresponds to 
the correct choice of /?~; uj=v~ corresponds to the 
assumption of an isotropic scattering factor. 

These results may be extended to the three-dimen- 
sional case, and it is found that  if an isotropic scattering 
factor is used in calculating the Fc's, the directions of 
principal curvature of D at  the centre of the j t h  atom 
are the directions of the axes of the corresponding 
'ellipsoid of thermal vibration' ,  while 

3 V{4(agD/ar~)j-(D2D/~r~)~- (~D/~r~)~} 
Auj---- 8~ruZfJ ~ , 

with strictly analogous formulae for Av s and Awj. 

5. The effect o f  errors o f  scale 

So far it has been assumed that  the calculated and 
observed structure factors are on the same absolute 
scale. In practice this will not always be the case, since 
the Fo'S are often measured in arbitrary units and sub- 
sequently scaled by comparison with the Fc's. Any error 
of scale will interfere very seriously with at tempts to 
find the correct temperature-factor parameters. In  the 
case where the scattering factors are isotropic, we can 
allow for a possible error of scale by taking 

fs =foe (1 - K) exp [ - m s s2], 

where K is the same for all atoms. Proceeding as in 
previous sections, the corrections AK and Amj required 
to minimize es are found to be given by 

~nfsAK+~{~nf j sg}Am~=-½~n~Fc(Fo- -Fc ,  , (5.1a) 

A (a D i 

(We are again considering a two-dimensional example.) 
I f  A K = 0 ,  (5.1b) reduces to (4.9). Equation (5.1a) 
involves the Ams's of all atoms, but  (5" 1 b) involves only 

one at  a time. Consequently by measuring O2D/~r2 at 
each atomic centre, and evaluating the right-hand side 
of (5.1a), the equations can be solved for AK and all 
Am/s. 

Equation (5.1b) serves to emphasize that  only by 
including observations corresponding to large values 
of s, so that  ~ s4fj becomes comparable with, or greater 

than, ~s2 f j ,  can accurate values of the Amj,s be 

obtained. 
We may also note tha t  the establishment of the 

correct scale of the scattering factors of individual 
atoms requires, if 

aes f s = f o j ( 1 - g j ) e x p [ - m s s 2 ] ,  ~ j = 0 .  

Using the definition of es (2.5) and of D (2.6), this 
reduces to (D)j=0.  

In short, the correct choice of scale, atomic co- 
ordinates and atomic scattering-factor parameters 
results in D = 0, aD/ar = 0 and a2D/~r ~ = 0 at each atomic 
centre. 

I should like to conclude by thanking Dr W. H. 
Taylor and Prof. Sir Lawrence Bragg for their con- 
tinued interest in, and support of, the research of which 
this contribution is a part. 
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